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ON IMPULSIVE REACTION-DIFFUSION MODELS
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Abstract. We formulate a general impulsive reaction-diffusion equation model to describe
the population dynamics of species with distinct reproductive and dispersal stages. The seasonal
reproduction is modeled by a discrete-time map, while the dispersal is modeled by a reaction-diffusion
partial differential equation. Study of this model requires a simultaneous analysis of the differential
equation and the recurrence relation. When boundary conditions are hostile we provide critical
domain results showing how extinction versus persistence of the species arises, depending on the size
and geometry of the domain. We show that there exists an extreme volume size such that if |Ω| falls
below this size the species is driven extinct, regardless of the geometry of the domain. To construct
such extreme volume sizes and critical domain sizes, we apply Schwarz symmetrization rearrangement
arguments, the classical Rayleigh–Faber–Krahn inequality, and the spectrum of uniformly elliptic
operators. The critical domain results provide qualitative insight regarding long-term dynamics for
the model. Last, we provide applications of our main results to certain biological reaction-diffusion
models regarding marine reserve, terrestrial reserve, insect pest outbreak, and population subject to
climate change.

Key words. reaction-diffusion models, persistence versus extinction of species, eigenvalue prob-
lems for differential operators, rearrangement arguments, population dynamics

AMS subject classifications. 92B05, 35K57, 92D40, 92D50, 92D25

DOI. 10.1137/15M1046666

1. Introduction. Impulsive reaction-diffusion equation models for species with
distinct reproductive and dispersal stages were proposed by Lewis and Li in [24].
These models can be considered to be description for a seasonal birth pulse plus non-
linear mortality, and dispersal throughout the year. Alternatively, they can describe
seasonal harvesting, plus nonlinear birth and mortality as well as dispersal through-
out the year. The population of a species at the beginning of year m is denoted by
Nm(x). We assume that reproduction (or harvesting) occurs at the beginning of the
year, via a discrete time map, g, after which there is birth, mortality, and dispersal
via a reaction-diffusion for a population with density u(m)(x, t). At the end of this
year the density u(m)(x, 1) provides the population density for the start of year m+1,
Nm+1(x). We examine solutions of the following system for any m ∈ Z+:

u
(m)
t = div(A∇u(m) − au(m)) + f(u(m)) for (x, t) ∈ Ω× (0, 1],
u(m)(x, t) = 0 for (x, t) ∈ ∂Ω× (0, 1],
u(m)(x, 0) = g(Nm(x)) for x ∈ Ω,
Nm+1(x) := u(m)(x, 1) for x ∈ Ω,

(1.1)

where Ω is a set in Rn, A is a constant symmetric positive definite matrix, and a is a
constant vector. We assume that the function g satisfies the following assumptions:
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ON IMPULSIVE REACTION-DIFFUSION MODELS 225

(G0) g is a continuous positive function in R+ and g(0) = 0 < g′(0) and there
exists a positive constant M ∈ (0,∞] such that g(N) is nondecreasing for
0 < N ≤ M . In other words, monotonicity of g is required only on a subset
of R+.

(G1) There exists a positive constant M̄ ≤ M such that g(N) ≤ g′(0)N for 0 <
N < M̄ .

(G2) There exists a differentiable function h for h(0) = h′(0) = 0 and a constant
M̃ ≤M so that g(N) ≥ g′(0)N − h(N) for 0 < N < M̃ .

Note that the linear function

(1.2) g(N) = bN,

where b is a positive constant, satisfies all of the above assumptions. For the above
g when b = 1 and f(N) = N(1 − N), model (1.1) recovers the classical Fisher’s
equation introduced by Fisher in [14] and Kolmogorov, Petrowsky, and Piscounoff
(KPP) in [21] in 1937. One can consider nonlinear functions for g such as the Ricker
function, that is

(1.3) g(N) = Ner(1−N),

where r is a positive constant. For the optimal stocking rates for fisheries math-
ematical biologists often apply the Ricker model [37] introduced in 1954 to study
salmon populations with scramble competition for spawning sites leading to overcom-
pensatory dynamics. The Ricker function is nondecreasing for 0 < N ≤ M = 1

r and
satisfies all of the assumptions. Note also that the Beverton–Holt function

(1.4) g(N) =
(1 + λ)N

1 + λN

for positive constant λ is an increasing function. The Beverton–Holt model was in-
troduced to understand the dynamics of compensatory competition in fisheries by
Beverton and Holt [4] in 1957. Another example is the Skellam function

(1.5) g(N) = R(1− e−bN ),

where R and b are positive constants. This function was introduced by Skellam in
1951 in [39] to study population density for animals, such as birds, which have contest
competition for nesting sites that leads to compensatory competition dynamics. Note
that the Skellam function behaves similarly to the Beverton–Holt function and it
is nondecreasing for any N > 0. We shall use these functions in the application
section (section 3). We refer interested readers to [41] for more functional forms with
biological applications. We now provide some assumptions on the function f . We
suppose the following:

(F0) f(.) is a continuous function and f(0) = 0. We also assume that f ′(0) 6= 0.
(F1) There exists a differentiable function h for h(0) = h′(0) = 0 so that

f ′(0)N − h(N) ≤ f(N) ≤ f ′(0)N for N ∈ R+.

Note that we do not have any assumption on the sign of f(.) and f ′(0). Note that
f(N) = N(1 − N), f(N) = bN for b ∈ R, and f(N) = αN − βN2 for α ∈ R and
β ∈ R+ satisfy the above assumptions (F0) and (F1).
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226 MOSTAFA FAZLY, MARK LEWIS, AND HAO WANG

Suppose that a = 0 and A = 0; then u(x, t) only depends on time and not space,
meaning that individuals do not advect or diffuse. Assume that Nm represents the
number of individuals at the beginning of the reproductive stage in the mth year.
Then  ut(t) = f(u(t)) for t ∈ (0, 1],

u(0) = g(Nm),
Nm+1 := u(1).

(1.6)

Separation of variables shows that

(1.7)

∫ Nm+1

g(Nm)

dω

f(ω)
= 1.

Note that a positive constant equilibrium of (1.6) satisfies

(1.8)

∫ N

g(N)

dω

f(ω)
= 1.

Assume that f satisfies (F0)–(F1) and g satisfies (G0)–(G2); then

(1.9) 1 =

∫ N

g(N)

dω

f(ω)
≥ 1

f ′(0)

∫ N

g(N)

dω

ω
=

1

f ′(0)
ln

∣∣∣∣ N

g(N)

∣∣∣∣ ≥ 1

f ′(0)
ln

∣∣∣∣ 1

g′(0)

∣∣∣∣ .
In light of the above computations, we assume that

(1.10) ef
′(0)g′(0) > 1,

and an N∗ > 0 exists such that f 6= 0 on the closed interval with endpoints N∗ and
g(N∗) and

(1.11)

∫ N∗

g(N∗)

dω

f(ω)
= 1.

We also assume that g is nondecreasing on [0, N∗]; that is equivalent to considering
M := N∗ in the assumption (G0). Note that for the case of equality in (1.9) there
might only be the zero equilibrium; for examples, see (3.2) and (3.18) in the application
section (section 3).

Equation (1.1) defines a recurrence relation for Nm(x) as

(1.12) Nm+1(x) = Q[Nm(x)] for x ∈ Ω ⊂ Rn,

where m ≥ 0 and Q is an operator that depends on A, a, f, g. While most of the
results provided in this paper are valid in any dimensions, we shall focus on the case
of n ≤ 3 for applications. For notational convenience we drop superscript (m) for
u(m)(x, t), rewriting it as u(x, t). The remarkable point about the impulsive reaction-
diffusion equation (1.1)–(1.12) is that it is a mixture of a differential equation and
a recurrence relation. Therefore, one may expect that the analysis of this model re-
quires a simultaneous analysis of the continuous and discrete type. If the yearlong
activities are modeled by impulsive dynamical systems, models of the form (1.1) have
a longer history and have been given various names: discrete time metered models [9],
sequential-continuous models [6], and semidiscrete models [38]. We refer interested
readers to [40] for more information.
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In this paper, we provide critical domain size for extinction versus persistence of
populations for impulsive reaction-diffusion models of the form (1.1) defined on do-
main Ω ⊂ Rn. It is known that the geometry of the domain has fundamental impacts
on qualitative behavior of solutions of equations in higher dimensions. We consider
domains with various geometric structures in dimensions n ≥ 1 including convex and
concave domains and also domains with smooth and nonsmooth boundaries.

The discrete time models of the form (1.12) are studied extensively in the litera-
ture, in particular in the foundational work of Weinberger [45], where Nm(x) repre-
sents the gene fraction or population density at time n at the point x of the habitat
and Q is an operator on a certain set of functions on the habitat. It is shown by
Weinberger [45] that under a few biologically reasonable hypotheses on the operator
Q, results similar to those for the Fisher and KPP types for models (1.12) hold. In
other words, given a direction vector e, the recurrence relation (1.12) admits a non-
increasing planar traveling wave solution for every c ≥ c∗(e) and, more importantly,
there will be a spreading speed c∗(e) in the sense that a new mutant or population
which is initially confined to a bounded set spreads asymptotically at speed c∗(e) in
direction e. This falls under the general Weinberger type given in (1.12).

Note that for the standard Fisher’s equation with the drift in one dimension,
that is,

(1.13) ut = duxx − aux + f(u) for (x, t) ∈ Ω× R+,

the critical domain size for the persistence versus extinction is

(1.14) L∗ :=
2πd√

4df ′(0)− a2

when Ω = (0, L) and the speeds of propagation to the right and left are

(1.15) c∗±(a) = 2
√
df ′(0)± a

when Ω = R. For more information regarding the minimal domain size, we refer inter-
ested readers to Lewis, Hillen, and Lutscher [23], Murray and Sperb [33], Pachepsky et
al. [34], Speirs and Gurney [42], and references therein. The remarkable point is that
c∗±(a) is a linear function of a and L∗ as a function of a blows up to infinity exactly
at roots of c∗±(a). For more information on analysis of reaction-diffusion models and
on strong connections between persistence criteria and propagation speeds, we refer
interested readers to [10, 23, 31, 32, 34] and references therein.

Notation 1.1. Throughout this paper the matrix I = (δi,j)
n
i,j=1 stands for the

identity matrix, the matrix A is defined as A = (ai,j)
n
i,j=1, and the vector a is a =

(ai)n. The matrix A and the vector a have constant components unless otherwise
stated. We shall refer to vector fields a with div a = 0 as divergence free vector fields.
The notation jm,1 stands for the first positive zero of the Bessel function Jm for any
m ≥ 0 and Γ refers to the Gamma function.

The organization of the paper is as follows. We investigate how the geometry
and size of the domain Ω affect persistence versus extinction of the species. We
consider various types of domain, including an n-hyperrectangle, a ball of radius R,
and a general domain with smooth boundary, to construct critical domain sizes and
extreme volume size (section 2). We then provide applications of the main results to
models for marine reserve, terrestrial reserve, insect pest outbreaks, and populations
subject to climate change (section 3). At the end, we provide proofs for our main
results and discussions.
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2. Geometry of the domain for persistence versus extinction. A habitat
boundary not only can be considered as a natural consequence of physical features
such as rivers, roads, or (for aquatic systems) shorelines but also it can come from
interfaces between different types of ecological habitats such as forests and grasslands.
Boundaries can induce various effects in population dynamics. They can affect move-
ment patterns, act as a source of mortality or resource subsidy, or function as a unique
environment with its own set of rules for population interactions. See Fagan, Cantrell,
and Cosner [11] for further discussion. Note that a boundary can have different effects
on different species. For example, a road may act as a barrier for some species but
as a source of mortality for others. Since a boundary can have different effects on
different species, the presence of a boundary can influence community structure in
ways that are not completely obvious from the ways in which they affect each species;
see Cantrell and Cosner [7, 8] for more information.

In this section, we consider the following impulsive reaction-diffusion model on
domains with hostile boundaries to explore persistence versus extinction

ut = div(A∇u− au) + f(u) for (x, t) ∈ Ω× (0, 1],
u(x, t) = 0 for (x, t) ∈ ∂Ω× (0, 1],
u(x, 0) = g(Nm(x)) for x ∈ Ω,
Nm+1(x) := u(x, 1) for x ∈ Ω,

(2.1)

where Ω is a bounded domain in Rn, a is a vector in Rn, and A is a constant positive
definite symmetric matrix.

In what follows we provide critical domain sizes for various domains depending
on the geometry of the domain. We shall postpone the proofs of these theorems to
the end of this section. We start with the critical domain size for a n-hyperrectangle
(n-orthotope).

Theorem 2.1. Assume that Ω = [0, L1] × · · · × [0, Ln], where L1, . . . , Ln are
positive constants, A = d(δi,j)

m
i.j=1, and the advection a is a constant vector field in

Rn. Suppose also that f satisfies (F0)–(F1), g satisfies (G0)–(G2), and (1.10) holds.
Then, critical domain dimensions L∗1, . . . , L

∗
n satisfy

(2.2)

n∑
i=1

1

[L∗i ]
2

=
1

dπ2

[
ln(ef

′(0)g′(0))− |a|
2

4d

]
,

where ln(ef
′(0)g′(0)) > |a|2

4d . More precisely, when

(2.3)

n∑
i=1

1

[Li]2
>

1

dπ2

[
ln(ef

′(0)g′(0))− |a|
2

4d

]
,

and g satisfies (G0)–(G1), then Nm(x) decays to zero, that is, limm→∞Nm(x) = 0,
and when

(2.4)

n∑
i=1

1

[Li]2
<

1

dπ2

[
ln(ef

′(0)g′(0))− |a|
2

4d

]
,

and g satisfies (G0)–(G2), then lim infm→∞Nm(x) ≥ N̄(x), where N̄(x) is a positive
equilibrium. In addition, critical domain dimensions can be arbitrarily large when

ln(ef
′(0)g′(0)) < |a|2

4d .
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Fig. 1. Critical domain dimension L∗ as a function of a = (a1, a2).

Suppose that the domain Ω is an n-hypercube. Then the critical domain size is
explicitly given by the following corollary.

Corollary 2.1. Suppose that assumptions of Theorem 2.1 hold. In addition, let
L1 = · · · = Ln = L > 0. Then the critical domain dimension is

(2.5) L∗ :=

{
2πd

√
n

4d[f ′(0)+ln(g′(0))]−|a|2 if 4d[f ′(0) + ln(g′(0))]− |a|2 > 0,

∞ if 4d[f ′(0) + ln(g′(0))]− |a|2 < 0.

The above results are shown in Figure 1 to clarify the relationship between the
critical domain dimension and the advection in two dimensions, n = 2.

Note that for the case n = 1 and a = 0, the minimal domain size L∗ was given
by Lewis and Li in [24]. In addition, one can compare the critical domain dimension
(2.5) for the impulsive reaction-diffusion model (1.1) in higher dimensions to the one
given by (1.14) for the classical Fisher’s equation in one dimension. We now provide
a similar result for a critical domain radius when the domain is a ball of radius R.
In Theorems 2.2 and 2.3, we let the drift a be a divergence free vector field that is
div a = 0.

Theorem 2.2. Suppose that Ω = BR, where BR is the ball of radius R and
centered at zero, A = d(δi,j)

m
i,j=1, and the drift a is a divergence free vector field that

is not necessarily constant vector field. Suppose also that f satisfies (F0)–(F1), g
satisfies (G0)–(G2), and (1.10) holds. Then the critical domain radius is

(2.6) R∗ := jn/2−1,1

√
d

ln(g′(0)) + f ′(0)
,

in the sense that if R < R∗ and g satisfies (G0)–(G1), then limm→∞Nm(x) = 0, and
if R > R∗ and if g satisfies (G0)–(G2), then lim infm→∞Nm(x) ≥ N̄(x), where N̄(x)
is a positive equilibrium.

Theorem 2.2 is a generalized version of the standard island case (two-dimensional
space) for discussing the persistence and extinction of a species.

From now on we consider a more general domain Ω ⊂ Rn with a smooth bound-
ary. Our main goal is to provide sufficient conditions on the volume and on the
geometry of the domain Ω for the extinction of populations. To be able to work
with general domains we borrow Schwarz symmetrization rearrangement arguments
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from mathematical analysis. In what follows, we introduce this symmetrization ar-
gument and then we apply it to eigenvalue problems associated to (1.1). We refer
interested readers to the lecture notes of Burchard [5] and references therein for more
information.

Let Ω be a measurable set of finite volume in Rn. Its symmetric rearrangement
Ω∗ is the following ball centered at zero whose volume agrees with Ω:

(2.7) Ω∗ := {x ∈ Rn; αn|x|n < |Ω|}.

For any function φ ∈ L1(Ω), define the distribution function of φ as

(2.8) µφ(t) := |{x ∈ Ω;φ(x) > t}|

for all t ∈ R. The function µφ is right-continuous and nonincreasing and as t → ∞
we have µφ → 0. Similarly, as t→ −∞ we have µφ → |Ω|. Now for any x ∈ Ω∗ \ {0}
define

(2.9) φ∗(x) := sup{t ∈ R, µφ(t) ≥ αn|x|n}.

The function φ∗ is clearly radially symmetric and nonincreasing in the variable |x|.
By construction, φ∗ is equimeasurable with φ. In other words, corresponding level
sets of the two functions have the same volume,

(2.10) µφ(t) = µφ∗(t),

for all t ∈ R. An essential property of the Schwarz symmetrization is the following:
if φ ∈ H1

0 (Ω), then |φ|∗ ∈ H1
0 (Ω∗) and

(2.11) |||φ|∗||L2(Ω∗) = ||φ||L2(Ω)

and

(2.12) ||∇|φ|∗||L2(Ω∗) = ||∇φ||L2(Ω).

One of the main applications of this rearrangement technique is the resolution of
optimization problems for the eigenvalues of some second-order elliptic operators on
Ω. Let λ1(Ω) denote the first eigenvalue of the Laplace operator −∆ with Dirichlet
boundary conditions in an open bounded smooth set Ω ⊂ Rn that is given by the
Rayleigh–Ritz formula

(2.13) λ1(Ω) = inf
||φ||L2(Ω)=1

||∇φ||2L2(Ω).

It is well-known that λ1(Ω) ≥ λ1(Ω∗) and that the inequality is strict unless Ω is
a ball. We refer interested readers to [13, 22] and references therein. Since λ1(Ω∗)
can be explicitly computed, this result provides the classical Rayleigh–Faber–Krahn
inequality, which states that

(2.14) λ1(Ω) ≥ λ1(Ω∗) =

(
|B1|
|Ω|

)2/n

j2
n/2−1,1,

where jm,1 is the first positive zero of the Bessel function Jm. More recently, Hamel,
Nadirashvili, and Russ in [16] provided an extension of the above result to the operator

(2.15) − div(A∇) + a · ∇+ V
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with Dirichlet boundary conditions where the symmetric matrix field A is in W 1,1(Ω),
the vector field (drift) a : L1(Ω)→ Rn and potential V that is a continuous function
in Ω̄. Throughout this paper, we call a matrix A uniformly elliptic on Ω̄ whenever
there exists a positive constant d such that for all x ∈ Ω̄ and for all ζ ∈ Rn,

(2.16) A(x)ζ · ζ ≥ d|ζ|2.

Consider the following eigenvalue problem:{
− div(A∇φ) + a · ∇φ = λ(A, a,Ω)φ in Ω,

u = 0 on ∂Ω;
(2.17)

when Ω ∈ C2,α for some 0 < α < 1, the matrix A is uniformly elliptic and a :
L∞(Ω)→ Rn, where ||a||∞ ≤ τ for τ ≥ 0. It is shown in [16] that the first eigenvalue
of (2.17) admits the following lower bound:

(2.18) λ1(A, a,Ω) ≥ λ1(d(δi,j), τer,Ω
∗).

Here Ω∗ = BR is the ball of radius

(2.19) R =

(
|Ω|
αn

)1/n

for αn := |B1| = π
n
2

Γ(1+n
2 ) . In addition, equality in (2.18) holds only when, up to

translation, Ω = Ω∗ and a = τer for er = x
|x| .

We are now ready to develop sufficient conditions for the extinction of population
on various geometric domains. The remarkable point here is that the volume of
the domain Ω is the key point for the extinction rather than the other aspects of
the domain. The following theorems imply that for some general domain Ω there
is an extreme volume size, Vex, such that when |Ω| < Vex extinction must occur
for the population living in the habitat. The following theorem provides an explicit
formula for such an extreme volume size for any open bounded domain with a smooth
boundary.

Theorem 2.3. Let A be uniformly elliptic, f satisfy (F0)–(F1), g satisfy (G0)–
(G2), and (1.10) hold. Suppose that the vector field a is divergence free and Ω ⊂ Rn
is an open bounded domain with smooth boundary. Then limm→∞Nm(x) = 0 for any
x ∈ Ω when |Ω| < Vex for

(2.20) Vex :=
1

Γ(1 + n
2 )

(
dπj2

n
2−1,1

f ′(0) + ln(g′(0))

)n
2

,

and jk,1 stands for the first positive root of the Bessel function Jk.

Theorem 2.3 states that the addition of incompressible flow to the impulse
reaction-diffusion problem can only make the critical domain size larger but never
smaller. Note that the above theorem, unlike Theorems 2.2 and 2.1, only deals with
the extinction and not the persistence of species. This is due to the fact that, in our
proofs, we apply the well-known Rayleigh–Faber–Krahn inequality (see (2.14)) and
rearrangement arguments to estimate the first eigenvalue of elliptic operators. Unfor-
tunately, these estimates are sharp only for the radial domains, that is, when Ω = BR.
Note also that for the n-hyperrectangle, eigenvalues of elliptic operators are explicitly
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known. In short, due to a lack of mathematical techniques, we provide criteria for the
extinction of species and proving persistence under the assumption |Ω| ≥ Vex seems
to be more challenging and remains open.

Corollary 2.2. In two dimensions, it is known that jn
2−1,1 = j0,1 ≈ 2.408.

Therefore the extreme volume size is

(2.21) Vex =
dπj2

0,1

f ′(0) + ln(g′(0))
.

Corollary 2.3. In three dimensions, jn
2−1,1 = j1/2,1 = π and Γ(1+n

2 ) = Γ(5
2 ) =

3
√
π

4 . Therefore,

(2.22) Vex =
4π4d

3

√
d

[f ′(0) + ln(g′(0))]
3 .

The fact that a hyperrectangle (or n-orthotope) does not have a smooth boundary
implies that Theorem 2.3 is not applied to these types of geometric shapes. In what
follows, we provide an extreme volume size result for a hyperrectangle in light of
Theorem 2.1.

Theorem 2.4. Suppose that Ω = [0, L1]×· · ·× [0, Ln] and A = d(δi,j)
n
i,j=1 where

L1, . . . , Ln and d are positive constants and a is a constant vector field. Assume that
f satisfies (F0)–(F1) and g satisfies (G0)–(G2) and (1.10) holds. If |Ω| ≤ Vex for

(2.23) Vex :=

{ (
4d2π2n

4d[f ′(0)+ln(g′(0))]−|a|2

)n/2
if 4d[f ′(0) + ln(g′(0))] > |a|2,

∞, if 4d[f ′(0) + ln(g′(0))] < |a|2.

Then limm→∞Nm(x) = 0 for any x ∈ Ω.

We shall end this section by briefly explaining the divergence free concept that
appeared in Theorems 2.2 and 2.3. The assumption div a = 0 implies that the flow
field is incompressible. This would be the case, for example, for water, but not for
air. It also means that the integral

(2.24)

∫
∂Γ

a · n dS = 0

vanishes by the divergence theorem. Here Γ is a smooth subset of the domain Ω
(possibly nonproper), and n is the outwardly oriented unit normal vector. The integral
quantity is interpreted as the total flow out of Γ. This implies that the addition of
incompressible flow to the problem cannot make the critical volume size any smaller,
although it could make it larger. Indeed, even in the simple case of one dimension
an incompressible flow term of the form a ≡ C, where C is a constant, can drive the
critical domain size to infinity.

3. Applications. In this section, we provide applications of main theorems given
in the past sections.

3.1. Marine reserve. A marine reserve is a marine area protected against fish-
ing and harvesting. Marine reserves could increase species diversity, biomass, and fish-
ery production, etc., within reserve areas (Lockwood, Hastings, and Botsford [28]).
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We use our model here to show the dependence of the critical domain size on the
advection flow speed and the mortality rate. Consider the model

ut = div(d∇u− au)− γu for (x, t) ∈ Ω× (0, 1],
u(x, t) = 0 for (x, t) ∈ ∂Ω× (0, 1],
u(x, 0) = g(Nm(x)) for x ∈ Ω,
Nm+1(x) := u(x, 1) for x ∈ Ω,

(3.1)

where γ is the natural mortality rate, and g is either the Beverton–Holt function

g(Nm) = (1+λ)Nm
1+λNm

or the Ricker function g(Nm) = Nme
r(1−Nm) for r, λ > 0. The

assumption (1.10) is equivalent to ln(1 + λ) > γ or r > γ for the Beverton–Holt or
Ricker functions, respectively. Note that the positive equilibrium N∗ exists for the
Beverton–Holt and Ricker functions and they are of the form

(3.2) N∗ :=
1

λ

[
e−γ(1 + λ)− 1

]
and N∗ :=

r − γ
r

,

respectively. Note also that the Ricker function is nondecreasing in [0, N∗] when
r ≤ γ + 1 and the Beverton–Holt function is increasing on the entire R+. We now
provide the critical dimension size regarding extinction versus persistence for various
geometric shapes.

Case 1. Consider the domain Ω = [0, L]×[0, L] in two dimensions. Then Theorem
2.1 implies that the critical dimension for the Beverton–Holt function is

(3.3) L∗(a) =
π
√

2d√
ln(1 + λ)− γ − |a|

2

4d

when ln(1 + λ) > γ + |a|2
4d and L∗(a) can be arbitrarily large when γ < ln(1 + λ) <

γ + |a|2
4d . Similarly, for the Ricker function the critical dimension is

(3.4) L∗(a) =
π
√

2d√
r − γ − |a|

2

4d

when γ + 1 ≥ r > γ + |a|2
4d and L∗(a) can be arbitrarily large when r − γ is close

to |a|2
4d . In other words, when L < L∗(a) the functional sequence Nm(x) satisfies

limm→∞Nm(x) = 0 that refers to extinction and when L > L∗(a) we have the
persistence that is limm→∞Nm(x) = N̄(x) for the positive equilibrium N̄(x).

Case 2. Consider the domain Ω = BR, where BR is a disk in two dimensions with
radius R and a is a divergence free vector field. Theorem 2.2 implies that the critical
value dimension for the Beverton–Holt function is

(3.5) R∗(γ) = j0,1

√
d

ln(1 + λ)− γ
,

and for the Ricker function the critical dimension is

(3.6) R∗(γ) = j0,1

√
d

r − γ
,
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where j0,1 ≈ 2.408 is the first positive root of the Bessel function J0. In other words,
for subcritical radius, that is, when R < R∗(γ), we have limm→∞Nm(x) = 0, and for
supercritical radius, that is, when R > R∗(γ), we have limm→∞Nm(x) = N̄(x) for
some positive equilibrium N̄(x).

Case 3. Consider a general domain Ω in two dimensions with smooth boundary
and area |Ω|. In addition, let a be a divergence free vector field that is div a = 0. We
now apply Theorem 2.3 to find the extreme mortality parameter

(3.7) γex :=
dj2

0,1

|Ω|
− ln(1 + λ),

which implies that extinction occurs for γ < γex and the Beverton–Holt function.
Similarly for the Ricker function the extreme mortality parameter h is given by

(3.8) γex :=
dj2

0,1

|Ω|
− r.

Note that our main results regarding the critical domain size and the extreme
volume size (section 2) are valid in three dimensions as well.

Case 4. Consider the domain Ω = [0, L]× [0, L]× [0, L] in three dimensions. The
corresponding formulae to (3.3) and (3.4) are

(3.9) L∗(a) =
π
√

3d√
ln(1 + λ)− γ − |a|

2

4d

and L∗(a) =
π
√

3d√
r − γ − |a|

2

4d

for the Beverton–Holt and Ricker functions, respectively, under the same assumptions
on the parameters. We now suppose that Ω = BR when BR is a disk in three
dimensions with radius R and a is a divergence free vector field. The corresponding
formulae to (3.5) and (3.6) are

(3.10) R∗(γ) = π

√
d

ln(1 + λ)− γ
and R∗(γ) = π

√
d

r − γ

for the Beverton–Holt and Ricker functions, respectively. Last, we consider a general
domain Ω in three dimensions with smooth boundary and area |Ω|. The corresponding
extreme mortality parameters to (3.7) and (3.8) are

(3.11) γex := d

(
4π4

3|Ω|

) 2
3

− ln(1 + λ) and γex := d

(
4π4

3|Ω|

) 2
3

− r

for the Beverton–Holt and Ricker functions, respectively.

As an application of these results, one can consider the water volume of a marine
reserve region for fish. Reserves are being applied commonly to conserve fish and other
populations under threat; see [3, 30]. We know that because water is incompressible,
the currents will give a divergence free vector field in three dimensions. Then Theorem
2.3 implies that ocean currents could not improve the persistence of the species, under
the assumption of hostile boundary conditions at the exterior of the reserve.
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3.2. Terrestrial reserve. A terrestrial reserve is a terrestrial protected area
for conservation and economic purposes. Terrestrial reserves conserve biodiversity
and protect threatened and endangered species from hunting [12]. We use our model
here to show the dependence of terrestrial species persistence on the diffusion rate.
Consider 

ut = d∆u− γu for (x, t) ∈ Ω× (0, 1],
u(x, t) = 0 for (x, t) ∈ ∂Ω× (0, 1],
u(x, 0) = g(Nm(x)) for x ∈ Ω,
Nm+1(x) := u(x, 1) for x ∈ Ω,

(3.12)

where g is the Beverton–Holt function g(Nm) = (1+λ)Nm
1+λNm

. Just like in section 3.1, the
assumption (1.10) is equivalent to ln(1 + λ) > γ.

Case 1. Consider the domain Ω = [0, L1]× [0, L2] in two dimensions, where L1, L2

are positive. Then a direct consequence of Theorem 2.1 is that when the diffusion is
greater than the critical diffusion

(3.13) d∗ :=
1

π2
[ln(1 + λ)− γ]

L2
1L

2
2

L2
1 + L2

2

,

that is, when d > d∗, we have limm→∞Nm(x) = 0 that refers to extinction. In
addition, when d < d∗ we have limm→∞Nm(x) = N̄(x) for some positive equilibrium
N̄(x).

Case 2. We now consider a bounded domain Ω in two dimensions with a smooth
boundary and area Ω. Theorem 2.3 implies that when the diffusion is greater than
the extreme diffusion

(3.14) dex :=
|Ω|
πj2

0,1

[ln(1 + λ)− γ],

that is, when d > dex, then the population must go extinct. Note that for the case of
Ω = BR, Theorem 2.2 implies that the extreme diffusion given by (3.14) is the critical
diffusion

(3.15) d∗ :=
R2

j2
0,1

[ln(1 + λ)− γ],

meaning that when d > d∗ then limm→∞Nm(x) = 0 and for d < d∗ we have
limm→∞Nm(x) = N̄(x) for some positive equilibrium N̄(x). In Case 1, we considered
a rectangular domain that does not have smooth boundaries, unlike the domain in
Case 2. Comparing d∗ and dex given by (3.13) and (3.14) one sees that d∗ < dex when
Ω = [0, L1]× [0, L2] and L1 = L2, since πj2

0,1 ≈ 18.21 and 2π2 = 19.73.

3.3. Insect pest outbreaks. Insect pest outbreaks are a historic problem in
agriculture and can have long-lasting effects. It may be necessary to control insect
pests in order to maximize crop production [43]. We apply our model here to study
the dependence of insect pest extirpation on the removal rate. Consider

ut = d∆u+ r(1− u)u for (x, t) ∈ Ω× (0, 1],
u(x, t) = 0 for (x, t) ∈ ∂Ω× (0, 1],
u(x, 0) = g(Nm(x)) for x ∈ Ω,
Nm+1(x) := u(x, 1) for x ∈ Ω,

(3.16)D
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where g(Nm) = (1 − s)Nm and 0 < s < 1 is the surviving fraction of pests that
contribute to the population a year later. The assumption (1.10) is equivalent to

(3.17) er(1− s) > 1.

Assuming that (3.17) holds, straightforward calculations show that the positive equi-
librium N∗ that solves (1.11) is of the form

(3.18) N∗ :=
(1− s)er − 1

(1− s)(er − 1)
,

and g is clearly increasing in [0, N∗].

Case 1. Consider the rectangular domain Ω = [0, L1]× [0, L2] in two dimensions
for positive L1, L2. We now apply Theorem 2.1 to conclude that the critical value for
the parameter s regarding extinction versus persistence is

(3.19) s∗ := 1− e
dπ2

[
L2

1+L2
2

L2
1L

2
2

]
−r
.

More precisely, for s > s∗ we have limm→∞Nm(x) = 0 and for s < s∗ we have
limm→∞Nm(x) = N̄(x) for the positive equilibrium N̄(x).

Case 2. Consider a slightly more general bounded domain Ω in two dimensions
with a smooth boundary and area |Ω|. Here we introduce an extreme value for the
parameter s as

(3.20) sex := 1− e
dπj20,1
|Ω| −r,

meaning that when s is larger than sex the population must go extinct.

3.4. Populations in moving habitats arising from climate change. We
end this part with mentioning that (3.1) can be applied to study a population subject
to climate change. Climate change, especially global warming, has greatly changed
the distribution and habitats of biological species. Uncovering the potential impact
of climate change on biota is an important task for modelers [36]. We consider a rect-
angular domain, that is, Ω = [0, L1]× [0, L2], moving in the positive x-axis direction
at speed c. Outside this domain conditions are hostile to population growth, while
inside the domain there is random media, mortality, and periodic reproduction. Using
the approach of [36] this problem is transformed to a related problem on a stationary
domain. Consider (3.16), where g is the Beverton–Holt function and the vector field
a is nonzero in the x-axis direction that is a = (−c, 0). Theorem 2.1 implies that for

(3.21)
1

L2
1

+
1

L2
2

<
1

dπ2

[
ln(1 + λ)− γ − c2

4d

]
,

when ln(1+λ) > γ+ c2

4d we have limm→∞Nm(x) = N̄(x) for some positive equilibrium
N̄(x) which refers to persistence of population. In other words, (3.21) yields the
parameter c must be bounded by

(3.22) c2 < 4d[ln(1 + λ)− γ]− (2dπ)2

[
L2

1 + L2
2

L2
1L

2
2

]
< 4d[ln(1 + λ)− γ].

This implies that persistence and ability to propagate should be closely connected.
This is the case from a biological perspective as well. For example, if a population
cannot propagate upstream but is washed downstream, it will not persist. We refer
interested readers to Speirs and Gurney [42] and Pachepsky et al. [34] for similar
arguments regarding Fisher’s equation with advection.
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4. Discussion. We examined impulsive reaction-diffusion equation models for
species with distinct reproductive and dispersal stages on domains Ω ⊂ Rn when n ≥
1 with diverse geometrical structures. Unlike standard partial differential equation
models, study of impulsive reaction-diffusion models requires a simultaneous analysis
of the differential equation and the recurrence relation. This fundamental fact rules
out certain standard mathematical analysis theories for analyzing solutions of these
types of models, but it opens up various ways to apply the model. These models can
be considered as a description for a continuously growing and dispersing population
with pulse harvesting and a population with individuals immobile during the winter.
As a domain Ω for the model, we considered bounded sets in Rn, including convex and
nonconvex domains with smooth or nonsmooth boundaries, and also the entire space
Rn. Since the geometry of the domain has tremendous impacts on the solutions of
the model, we consider various types of domains to study the qualitative properties of
the solutions. We refer interested readers to [7, 8, 11] and references therein regarding
how habitat edges change species interactions.

On bounded rectangular and circular domains, we provided critical domain sizes
regarding persistence versus extinction of populations in any space dimension n ≥ 1.
In order to find the critical domain sizes we used the fact that the first eigenpairs
of the Laplacian operator for such domains can be computed explicitly. Note that
for a general bounded domain in Rn, with smooth boundaries, the spectrum of the
Laplacian operator is not known explicitly. However, various estimates are known for
the eigenpairs. As a matter of fact, study of the eigenpairs of differential operators is
one of the oldest problems in the field of mathematical analysis and partial differential
equations; see Faber [10], Krahn [22], Pólya [35], and references therein.

We applied several mathematical analysis methods such as Schwarz symmetriza-
tion rearrangement arguments, the classical Rayleigh–Faber–Krahn inequality, and
lower bounds for the spectrum of uniformly elliptic operators with Dirichlet bound-
ary conditions given by Li and Yau [27] to compute a novel quantity called extreme
volume size. Whenever |Ω| falls below the extreme volume size the species must be
driven extinct, regardless of the geometry of the domain. In other words, the ex-
treme volume size provides a lower bound (a necessary condition) for the persistence
of population. In the context of biological sciences this can provide a partial answer
to questions about how much habitat is enough (see also Fahrig [12] and references
therein). We believe that this opens up new directions of research in both mathematics
and sciences.

In this paper we presented applications of our main results in two and three space
dimensions to certain biological reaction-diffusion models regarding marine reserve,
terrestrial reserve, insect pest outbreaks, and population subject to climate change.
Note that when n = 1 our results recovers the results provided by Lewis and Li [24]
and when g(N) = N and A = d(δi,j)

n
i,j=1 our results on both bounded and unbounded

domains coincide with the ones for the standard Fisher-KPP equation. Throughout
this paper we assumed that the diffusion matrix and, for the most part, the advec-
tion vector field contain constant components. Study of the influence of nonconstant
advection and nonconstant diffusion on persistence and extinction properties is con-
sidered in the work of Hamel and Nadirashvili [15], and Hamel, Nadirashvili, and
Russ [16].

5. Proofs. In this section, we provide mathematical proofs for our main results.

5.1. Proofs of Theorems 2.1 and 2.2. We start with the proof of Theorem
2.1. The proof of Theorem 2.2 is very similar. For both of the proofs, the following
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technical lemma plays a fundamental role. We shall omit the proof of the lemma since
it is standard in this context.

Lemma 5.1. Suppose that φ1, λ1 are the first eigenvalue and the first eigenfunc-
tion of (2.17). Then

λ1(dI, a, [0, L1]× · · · × [0, Ln]) =
|a|2

4d
+ dπ2

(
1

L2
1

+ · · ·+ 1

L2
n

)
,(5.1)

λ1(dI, 0, BR) = j2
n/2−1,1R

−2d,(5.2)

where jm,1 is the first positive zero of the Bessel function Jm.

Proof of Theorem 2.1. Suppose that the recurrence relation N̄m(x) is a solution
of the following linearized problem:

ut + a · ∇u = div(A∇u) + f ′(0)u for (x, t) ∈ Ω× R+,
u(x, t) = 0 for (x, t) ∈ ∂Ω× R+,
u(x, 0) = g′(0)N̄m(x) for x ∈ Ω,
N̄m+1(x) := u(x, 1) for x ∈ Ω.

(5.3)

Let

(5.4) u(x, t) = cg′(0)eλtφ(x)

be a solution for the above linear problem (5.3) for some function φ and constant c.
It is straightforward to show that φ satisfies

(5.5) − div(A∇φ) + a · ∇φ = (f ′(0)− λ)φ in Ω.

Note that the initial condition is u(x, 0) = g′(0)N̄m(x) = cg′(0)φ(x). This implies
that

(5.6) N̄m+1(x) = u(x, 1) = cg′(0)eλφ(x) = g′(0)eλN̄m(x).

In light of (5.5), we consider the Dirichlet eigenvalue problem −div(A∇φ) + a · ∇φ = λφ in Ω,
φ = 0 on ∂Ω,
φ > 0 in Ω

(5.7)

and let the pair (φ1, λ1(A, a,Ω)) be the first eigenpair of this problem. Setting λ :=
f ′(0)− λ1(A, a,Ω) in (5.4) we get

(5.8) u(x, t) = cg′(0)e(f ′(0)−λ1(A,a,Ω))tφ1(x).

This implies that

(5.9) N̄m+1(x) = c
(
g′(0)ef

′(0)−λ1(A,a,Ω)
)m

φ1(x).

Therefore, we get

(5.10) lim
m→∞

N̄m(x) = 0

when g′(0)ef
′(0)−λ1(A,a,Ω) < 1, that is, when

(5.11) λ1(A, a,Ω) > ln(ef
′(0)g′(0)).
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Suppose that u(x, 0) = N0(x) is an initial value for the original nonlinear problem
(1.1). One can choose a sufficiently large c such that N0(x) ≤ N̄0(x). Applying
standard comparison theorems, together with the fact that g is linear, and induction
arguments we obtain Nm(x) ≤ N̄m(x) for all m ≥ 0. This implies that

(5.12) lim
m→∞

Nm(x) = 0

when (5.11) holds. We now analyze inequality (5.11) that involves the first eigenvalue
of (5.7). Applying Lemma 5.1 to (5.7) when A = d(δi,j)

m
i,j=1, Ω = [0, L1]×· · ·× [0, Ln]

we obtain

(5.13) λ1(dI, a,Ω) =
|a|2

4d
+ dπ2

(
n∑
i=1

L−2
i

)
.

Equating this and (5.11) we end up with

(5.14)

n∑
i=1

L−2
i >

1

4d2π2

[
4d[ln(ef

′(0)g′(0))]− |a|2
]
.

This proves the first part of the theorem. To show the second part we suppose that
g satisfies (G0)–(G2) and we analyze the eigenvalue problem (5.7). Suppose that
g′(0)ef

′(0)−λ1(A,a,Ω) > 1, that is, when the inequality (5.11) is reversed, namely,

(5.15) λ1(A, a,Ω) < ln(g′(0)) + f ′(0).

Let λ > λ1 and g such that gef
′(0)−λ > 1. Since g satisfies (G0)–(G2), there exists an

M̃ such that g(N) ≥ g′(0)N − h(N) for 0 < N < M̃ . The fact that h is differentiable
and h(0) = h′(0) = 0 implies that there exists a positive constant δ such that for

N < δ the fraction h(N)
N can be sufficiently small, let’s say

(5.16)
h(N)

N
< min{g′(0)− g, λ− λ1}.

Now define

(5.17) u(x, t) = εge(f ′(0)−λ)tφ1(x).

Note that g(u(x, t)) ≥ g′(0)u(x, t)− h(u(x, t)). For sufficiently small ε and t ∈ (0, 1],
we get

g(u(x, t))

u(x, t)
≥ g + (g′(0)− g)− h(u(x, t))

u(x, t)
≥ g,(5.18)

where we have used the fact that h(u(x,t))
u(x,t) < g′(0) − g when t ∈ (0, 1]. This implies

that

(5.19) g(u(x, t)) ≥ g u(x, t).

We now show that u is a subsolution for the partial differential equation given in (1.1)
when t ∈ (0, 1], that is,{

ut = div(A∇u) + a · ∇u+ f(u) for (x, t) ∈ Ω× R+,
u(x, t) = 0 for (x, t) ∈ ∂Ω× R+.

(5.20)
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Since f satisfies (F0)–(F1), we get

(5.21) f(u) ≥ f ′(0)u− h(u) = εge(f ′(0)−λ)tφ1f
′(0)− h(u).

This implies that

ut − div(A∇u)− a · ∇u− f(u)(5.22)

≤ εge(f ′(0)−λ)t [(f ′(0)− λ)φ1 − div(A∇φ1) + a · ∇φ1 − f ′(0)φ1] + h(u)

= εge(f ′(0)−λ)t [−div(A∇φ1) + a · ∇φ1 − λ1φ1]

+ εge(f ′(0)−λ)t [λ1 − λ]φ1 + h(u).

Note that λ1 is the first eigenvalue of (5.7) that yields

(5.23) − div(A∇φ1) + a · ∇φ1 − λ1φ1 = 0.

Applying this in (5.22) we get

ut − div(A∇u)− a · ∇u− f(u)(5.24)

≤ εge(f ′(0)−λ)t [λ1 − λ]φ1 + h(u)

= u

[
λ1 − λ+

h(u)

u

]
.

We now apply (5.16) to conclude that

(5.25) ut − div(A∇u)− a · ∇u− f(u) ≤ 0.

This proves our claim. Suppose that Nm(x) is a solution of (1.1); then

(5.26) Nm+1(x) = Q[g(Nm)](x),

where the operator Q maps u(x, 0) to u(x, 1). To be more precise, let u(x, t) solve{
ut = div(A∇u− au) + f(u) for (x, t) ∈ Ω× (0, 1],
u(x, 0) = u0(x) for x ∈ Ω;

(5.27)

then u(x, 1) = Q[u0](x). It is straightforward to see that Q is a monotone operator
due to comparison principles. Now, let M0(x) = εφ1(x) and

(5.28) Mm+1(x) = Q[g(Mm)](x).

We now apply the fact that u is a subsolution of (5.27) together with (5.25) and (5.19)
and the monotonicity of the operator Q to conclude

(5.29) M1(x) = Q[g(M0)](x) ≥ Q[g ·M0](x) ≥ u(x, 1) ≥M0(x).

An induction argument implies that

(5.30) Mm+1(x) ≥Mm(x) for m ≥ 0.

Note that g(0) = 0 and Q is a continuous operator defined on the range of function g.
This implies that for a sufficiently small ε > 0, we have M0(x) = εφ1(x) ≤ M1(x) =
Q[g(εφ1(x))](x) ≤ N∗, where N∗ is a positive equilibrium for (1.8). Therefore,

(5.31) Mm(x) ≤Mm+1(x) ≤ N∗.
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The sequence of function Mm(x) is bounded increasing that must be convergent to
N(x). Note also that for sufficiently small ε one can show that M0(x) = εφ1(x) ≤
Q[g(u0)](x) = Q[g(N0)](x) = N1(x). We refer interested readers to [19] for a similar
argument. Finally from comparison principles we have Mm+1(x) ≤ Nm(x). This and
(5.31) imply that lim infm→∞Nm(x) ≥ lim infm→∞Mm(x) = N(x). This completes
the proof.

Proof of Corollary 2.1. Assuming that Li = L > 0 for any 1 ≤ i ≤ n, from (5.14)
we get the following:

(5.32) nL−2 >
1

4d2π2

(
4d[ln(g′(0)) + f ′(0)]− |a|2

)
.

This completes the proof.

Proof of Theorem 2.2. Suppose that the recurrence relation N̄m(x) is a solution
of the linearized problem (5.3) when div a = 0 and A = d(ai,j)

m
i,j=1. Assume that the

following function u(x, t) is a solution for the linear problem (5.3),

(5.33) u(x, t) = cg′(0)eλtφ(x),

for some constant c and where φ satisfies

(5.34) − d∆φ+ a · ∇φ = (f ′(0)− λ)φ in BR.

Suppose that λ1 is the first eigenvalue of the following eigenvalue problem with Dirich-
let boundary conditions: −d∆φ+ a · ∇φ = λ(dI, a,BR)φ in BR,

φ = 0 on ∂BR,
φ > 0 in BR.

(5.35)

Under similar arguments as in the proof of Theorem 2.1, whenever

(5.36) λ1(dI, a,BR) > ln(ef
′(0)g′(0)),

we conclude the decay

(5.37) lim
m→∞

Nm(x) = lim
m→∞

N̄m(x) = 0 in BR,

and otherwise we get

(5.38) lim
m→∞

Nm(x) ≥ lim
m→∞

N̄m(x) ≥ N(x) in BR.

Therefore, we only need to discuss the magnitude of λ1. Lemma 5.1 implies that

(5.39) λ1(dI, 0, BR) = d

(
|B1|
|BR|

)2/n

j2
n/2−1,1,

where jn/2−1,1 is the first positive zero of the Bessel function Jn/2−1. This and the
fact that a is a divergence free vector field imply that

(5.40) λ1(dI, a,BR) ≥ dR−2j2
n/2−1,1.

Combining (5.40) and (5.36) provides proofs for (5.37) and (5.38) when R < R∗ and
R > R∗, respectively, where

(5.41) R∗ :=

√
d j2

n/2−1,1

ln(g′(0)) + f ′(0)
.

This completes the proof.
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5.2. Proofs of Theorems 2.3 and 2.4. This part is dedicated to proofs of
theorems regarding the extreme volume size for both a general domain Ω ⊂ Rn
with a smooth boundary, Theorem 2.3, and also for a n-hyperrectangle domain Ω =
[0, L1]× · · · × [0, Ln] with nonsmooth boundaries, Theorem 2.4.

Proof of Theorem 2.3. With the same reasoning as in the proof of Theorem 2.1,
the limit tends to zero, that is,

(5.42) lim
m→∞

Nm(x) = lim
m→∞

N̄m(x) = 0 in Ω,

when

(5.43) λ1(A, a,Ω) > ln(ef
′(0)g′(0)).

Here λ1(A, a,Ω) stands for the first eigenvalue of −div(A∇φ) + a · ∇φ = λ1(A, a,Ω)φ in Ω,
φ = 0 on ∂Ω,
φ > 0 in Ω.

(5.44)

From the fact that the vector field a is divergence free (in the sense of distributions),
we have λ1(A, a,Ω) ≥ λ1(A, 0,Ω). This can be seen by multiplying (5.44) with φ and
integrating by parts over Ω and using the fact that div a = 0. We now apply the
generalized Rayleigh–Faber–Krahn inequality (2.18), that is,

(5.45) λ1(A, a,Ω) ≥ λ1(dI, 0,Ω∗),

where Ω∗ is the ball BR ⊂ Rn for the radius R = ( |Ω||B1| )
1/n where |B1| is the volume

of the unit ball, that is, |B1| = π
n
2

Γ(1+n
2 ) . Note that Lemma 5.1 implies that

(5.46) λ1(dI, 0,Ω∗) = j2
n/2−1,1R

−2d.

Combining (5.43), (5.45), and (5.46) shows that whenever

(5.47) j2
n/2−1,1R

−2d > f ′(0) + ln(g′(0)),

the decay estimate (5.42) holds. Note that the radius R in (5.47) is ( |Ω||B1| )
1/n. This

implies that for any domain with the volume |Ω| that is less than

(5.48) |Ω| < |B1|

(
d j2

n/2−1,1

f ′(0) + ln(g′(0))

)n
2

,

the population must go extinct. This completes the proof.

We now provide a proof for Theorem 2.4, that is, in regards to n-hyperrectangle
domain

Ω = [0, L1]× · · · × [0, Ln]

with nonsmooth boundaries.

Proof of Theorem 2.4. The idea of the proof is very similar to the ones provided
in proofs of Theorems 2.3 and 2.1. The decay of the Nm(x) to zero as m goes to
infinity refers to inequality (5.14), that is,

(5.49)
1

L2
1

+ · · ·+ 1

L2
n

>
1

dπ2

[
f ′(0) + ln(g′(0))− |a|

2

4d

]
.
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Note that when the right-hand side of the above inequality is nonpositive then this is

valid for any Li for 1 ≤ i ≤ n. So, we assume that f ′(0) + ln(g′(0))− |a|
2

4d > 0.
On the other hand, the following inequality of arithmetic and geometric means

hold:

(5.50)
1

L2
1

+ · · ·+ 1

L2
n

≥ n n

√
1

L2
1

· · · 1

L2
n

= n

(
1

L1 · · ·Ln

) 2
n

= n|Ω|− 2
n ,

where the equality holds if and only if L1 = · · · = Ln. Combining (5.49) and (5.50)
yields that when

(5.51) |Ω| <

(
ndπ2

f ′(0) + ln(g′(0))− |a|
2

4d

)n/2
,

the population must go extinct. This completes the proof.

5.3. The spectrum of the Laplacian operator. To find the the extreme vol-
ume size Vex in Theorem 2.3 we applied the Schwarz symmetrization argument and
the classical Rayleigh–Faber–Krahn inequality and its generalizations. In this part we
discuss that one can avoid applying rearrangement-type arguments to obtain inequal-
ities for eigenvalues of the Laplacian operator with Dirichlet boundary conditions for
an arbitrary domain Ω. However, the extreme volume size Vex that we deduce with
this argument is slightly smaller than the one given in (2.20). Suppose that −∆φ = λφ in Ω,

φ = 0 on ∂Ω,
φ > 0 in Ω.

(5.52)

The discreteness of the spectrum of the Laplacian operator allows one to order the
eigenvalues 0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · monotonically. Proving lower bounds for
λk has been a celebrated problem in the field of partial differential equations. We now
mention key results in the field and then we apply the lower bounds to our models. In
1912, Weyl showed that the spectrum of (5.52) has the following asymptotic behavior
as k →∞:

(5.53) λk ∼ (2π)2|B1|−
2
n

(
k

|Ω|

) 2
n

.

In 1960, Pólya in [35] proved that for certain geometric shapes, that is, “plane-covering
domain” Ω ⊂ Rn, the following holds for all k ≥ 1:

(5.54) λk ≥ (2π)2|B1|−
2
n

(
k

|Ω|

) 2
n

.

Then he conjectured that the above inequality should hold for general domains in
Rn. His original proof and his conjecture were provided for n = 2. Even though this
conjecture is still an open problem there are many interesting results in this regard.
The inequality

(5.55) λk ≥ Cn(2π)2|B1|−
2
n

(
k

|Ω|

) 2
n
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with a positive constant Cn <
n
n+2 was given for arbitrary domains by Lieb in [26]

and references therein. Li and Yau [27] improved upon this result, proving that the
following lower bound holds for all k ≥ 1:

(5.56) λk ≥
n

n+ 2
(2π)2|B1|−

2
n

(
k

|Ω|

) 2
n

.

We now apply the lower bound (5.56) to get the following extreme volume size.
Note that this Vex is independent from Bessel functions.

Theorem 5.1. Let A = d(δi,j)
m
i,j=1 for a positive constant d and the vector field a

be divergence free. We assume that f satisfies (F0)–(F1), g satisfies (G0)–(G2), and
(1.10) holds. Suppose that Ω ⊂ Rn is an open bounded domain with smooth boundary
and |Ω| < Vex, where

(5.57) Vex = Γ
(

1 +
n

2

)[ 4dnπ

(n+ 2)[f ′(0) + ln(g′(0))]

]n
2

.

Then limm→∞Nm(x) = 0 for any x ∈ Ω.

Corollary 5.1. In two dimensions n = 2, the extreme volume size provided in
(5.57) is

(5.58) Vex =
2dπ

f ′(0) + ln(g′(0))
.

Moreover, in three dimensions n = 3, the extreme volume size (5.57) simplifies to

(5.59) Vex =
18
√

3π2

5
√

5

(
d

f ′(0) + ln(g′(0))

) 3
2

,

where we have used the fact that Γ(1 + n
2 ) = Γ( 5

2 ) = 3
√
π

4 .

Note that Vex given in (5.58) and (5.59) are slightly smaller than the ones given
by (2.21) and (2.22) in Corollaries 2.2 and 2.3, respectively.

Proof of Theorem 5.1. Note that we have the following lower bound on the first
eigenvalue as an immediate consequence of (5.56), that is,

(5.60) λ1(dI, 0,Ω) ≥ d n

n+ 2
(2π)2 (|B1||Ω|)−

2
n .

Following ideas provided in the proof of Theorem 2.3 one can complete the proof.

Acknowledgment. The authors would like to thank the anonymous referees for
many valuable suggestions.
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